
Integrating Security in a Group
Oriented Distributed System*

Michael Reiter
Kenneth Birman

Li Gong

TR 92-1269

(replaces TR 91-1239)
February1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under DARPNNASA subcontract NAG 2-593, administered by the NASA Ames
Research Center by grants from GTE, IBM and Siemens, Inc. and by a National
Science Foundation Graduate Fellowship. Any opinions, conclusions or
recommendations expressed in this document are those of the authors and do not
necessarily reflect the views, policies or decisions of the National Science
Foundation or the Department of Defense.

Integrating Security in a Group Oriented Distributed System*

Michael Reiter Kenneth Birman Li Gong

Dept. of Computer Science

Cornell University

Ithaca, NY 14853

reiter@cs, corne11.edu

Dept. of Computer Science

Cornell University

Ithaca, NY 14853

ken @cs. cornell, edu

ORA Corporation

675 Massachusetts Ave.

Cambridge, MA 02139

li@cam bridge, oracorp, corn

Abstract

A distributed security architecture is proposed for

incorporation into group oriented distributed systems,

and in particular, into the Isis distributed program-

ming toolkit. The primary goal of the architecture is

to make common group oriented abstractions robust

in hostile settings, in order to facilitate the construc-

tion of high performance distributed applications that

can tolerate both component failures and malicious at-
tacks. These abstractions include process groups and

causal group multicast. Moreover, a delegation and
access control scheme is proposed for use in group

oriented systems. The focus of the paper is the se-

curity architecture; particular cryptosystems and key

exchange protocols are not emphasized.

1 Introduction

Systems that address security issues in distributed

environments have traditionally been constructed

upon the remote procedure call (RPC) paradigm of
communication (e.g., [4, 24, 28, 17]). Many systems,

however, utilize more general types of communication

which have not enjoyed the same amount of atten-

tion from the security community. One such alterna-

tive is group oriented communication, based on the

process group abstraction [I]. Process groups have

been incorporatedintomany distributedsystems (e.g.,

*Thiswork wu supportedby the DefenseAdvanced Re-
searchProjectsAgency (DoD) underDARPA/NASA subcon-
tractNAG2-593 administeredby the NASA Ames Research
Center,by grantsfrom GTE, IBM, and Siemerm,Inc.,and by
aNationalScienceFoundationGraduateFellowship.Any opin-
ions,conclusionsor recommendationsexpressedinthisdocu-
ment arethoseoftheAuthorsand do notneces_utrilyreflectthe
views,policiesordecisionsoftheNationalScienceFoundation
ortheDepartmentofDefense.

[18, 5, 2, 19, 23, 14, 13]) and have been shown to sim-

plify the implementation of fault tolerant applications

[5, 2, 14]. The benefit in preserving process group ab-
stractions in hostile environments could therefore be

great. In particular, it would facilitate the construc-

tion of applications that can tolerate both component
failures and malicious attacks.

To illustrate this need, consider a stock broker-

age that plans to establish a trading service to trade
stocks for a certain industry on the over-the-counter

market (OTC). The trading service will reside in a

large distributed system shared by other brokerages

and traders.Because the brokerage isa market maker

for that industry,other brokerages and traders buy

and sellstocksin that industry through that broker-

age,and so theservicewillbe utilizedby othertrader's

applications.The availabilityand performance of this

serviceiscrucial,and thus itmust be replicated.Ac-

cordingly,the firm'sprogrammers might liketo im-

plement thisserviceas a faulttolerantprocessgroup

usingtheirfavoritegroup orientedprogramming envi-
ronment.

At the same time, however, the brokerage iscon-

cerned about the securityofitsservice.The brokerage

plansto execute thisserviceon a potentiallydynamic

set of sites;e.g.,the brokerage may rent additional

machines during times of heavy load in order to rlJn

additionalservers. And, while the brokerage iscon-

fidentthat itcan protectthese sitesfrom corruption

while serversare executing on them, itcannot trust

that other sites,or the network by which the sit_

communicate, willbehave as expected. For instan,'o

corrupt tradersmay attempt to infiltratethe gro,_p

alteror forgegroup communication, or tamper Wlth

the group abstractionson which the consistencyan,l

correctnessoftheservicewould rely.So, ifthe ab_tra,-

tionsprovided by the group orientedprogramming ,_*_-

vironment are not robust againstmaliciousattack _T

To appear in Proceedings of the 1992 IEEE Symposium on Research in Security and Privacy.

is doubtful whether it should be used at all. More-

over, the brokerage is not willing to entirely trust all

of its own brokers, and thus needs some way to enforce

security policies even within the set of protected sites.

Generalizing from this example, we are concerned

with facilitating the construction of high performance,

fault tolerant applications on a secured and potentially

dynamic "island" of sites. We approach this task by

making common group oriented abstractions robust
on this island, despite malicious attacks against them.

A second goal is to provide support for group oriented

security policies within such an island. Third, since

applications may need to interact with less trusted

parties outside of this island, we feel it is important to

provide guarantees regarding the results of such com-
munication.

Another impetus to preserve process group abstrac-

tions in hostile environments is that the cryptographic

community has identified several practical security

needs in settings where groups occur naturally [7].

Proposed solutions (e.g., [10, 15, 8]), however, presup-
pose a group oriented infrastructure which cannot be

effectively provided in a hostile environment by cur-
rent systems. Secure group oriented foundations will

enable applications to more easily realize the benefits
of this research.

This paper presents a distributed security archi-

tecture to be integrated with group oriented systems

and, in particular, with the Isis toolkit [2]. 1 Isis is a

toolkit for distributed programming that provides pro-

cess group and reliable group multicast abstractions.
With respect to Isis, the aims of this work are twofold.
The first is to weaken the execution model assumed by

Isis so that malicious behaviors are admitted, while

still preserving the abstractions provided by Isis. The
second is to enhance the Isis abstractions to be more

suitable for use in a hostile environment. And, of

course, we wish to accomplish these without unrea-

sonably degrading the performance of the toolkit.

The goal of this paper is to describe the ma-

jor features of our security architecture. More pre-

cisely, we discu_ how our architecture addresses three
needs, namely for group oriented authentication, se-

cure methods for joining groups, and causal multi-

cast protocols that are appropriate in hostile envi-
ronments. We also propose a delegation and access

control scheme for use in group oriented systems. We

do not discuss key exchange protocols or specific cryp-

tosystems in detail. We instead focus on the mecha-

1 This architecture is t_dlored to a reimplementation of the

IJis toolkit called Hortm, named alter the son of Isis in Egyptian

mythology. In this paper, we will use Hortm terminology, which

may be unfamiliar to users of earlier vevaions of Isis.

nisms we use to protect the abstractions that are fun-

damental in Isis and, we believe, in a group oriented

setting.

The rest of this paper is structured as follows. We

begin in section 2 with an informal description of the
abstractions provided by [sis. In section 3 we discuss

the system model for which Isis was designed and then
weaken this model to allow malicious behaviors. Sec-

tion 4 clarifies our goals and presents the three basic

aspects of our security architecture previously men-

tioned. Section 5 describes our group oriented delega-
tion and access control scheme. We end with a discus-

sion of the status of the system and future directions
of research.

2 The Isis abstractions

The basic abstraction provided by Isis is the process

group, which is simply a collection of processes with

an associated group address. Groups may overlap and
be nested arbitrarily, and processes may create and

join groups at any time. And, a process may be re-

moved from a group, either because it was perceived

to fail (i.e., crash) or because it requested to leave. A

group G can thus be seen as progressing through a se-

quence viewo(G), view1 (G),... of views satisfying the

following conditions.

* For all i, views(G) C_ P, where P is the set of all

processes in the system.

* viewo(G) = 0.

• For all i, viewi(G) and viewi+t(G) differ by the

addition or subtraction of exactly one process

Members of a group learn about the membership of

the group through certain events. More precisely, exe-

cution of a process p is modeled as a sequence e°, e_
of events, each corresponding to the execution of an
indivisible action. One such event is the delivery of

the i-th group view viewi(G) of a process group G

Views are delivered to processes in sequential order.
with the constraint that the i-th view of G is deliv-

ered to p only if p E viewi(G). If the i-th group view

of G is delivered to p, then we say that p is in the i-th

group view until the (i + l)-th view is delivered or p
is removed from the group.

The primary means of communication in [sis _s
group mullicast. (Point-to-point communication L_

treated essentially as multicast in a static group .,f

size two, where any membership change destrov_ lh, _

ORIGINAL PAGE IS
OF POOR QUALITY

group.) A process in (some view of) a group can mul-

ticast to the group by specifying the group address as

the destination. Isis guarantees to processes certain

delivery properties regarding group multicasts. For in-

stance, all operational destinations eventually deliver

the message or, and only if the sender fails, none do.

And, all destination processes are in the same group
view when the message is delivered, and the set of

destination processes is precisely the members of that
view.

One guarantee of particular interest in this paper is

that messages are delivered in an order consistent with

potential causality. Informally, one message is said to

be causally before another if the former was sent before

and could have affected the latter [16]. Causal deliv-

ery ordering has been shown to be crucial in systems
such as Isis that exploit asynchronous operations to

achieve high performance [1], because when messages

are asynchronously pipelined to destinations, a mes-

sage could be received at the destination site before
another causally before it. The danger is that, e.g.,

an update to a data structure could be delivered to

an application before the message initializing the data

structure. A delivery ordering that respects causality

avoids such problems.

To define the causal delivery ordering in our set-

ting, we introduce two more types of events that can
be executed by a process p in a group G: the multi-

cast of a message m to G, denoted mcastp(m, G), and

the delivery of a message m multicast to G, denoted

deliverp(m, G). The potential causality relation --* is
defined as the transitive closure of the smallest rela-

tion _ satisfying the following conditions.

i
• For all i and p, ep -,-* e_+1.

• For all m, p, q, and G,

meastp(m, G) ",_ deliverq(m, G).

Isis' causal delivery ordering property guaran-

tees that if mcastp(m, G) -* mcastq(m°,Gt), then
at any common destination r, deliverr(m,G) --+

deliver_(m _, G°). In words, if the multicast of message

m causally precedes the multicast of message m I, then
m is delivered before m I at any common destination.

The multicast primitive that provides this property is
called CBCAST and is a fundamental building block

on which other Isis abstractions are implemented [3].

To summarize, Isis provides process group and

group multicast abstractions. Notification of group
membership changes are coordinated with respect to

the delivery of group multicasts. And, multicast de-

liveries to a process are ordered causally to allow Isis

to safely exploit asynchronous communication.

3 The system model

The basic system model for which Isis was origi-

nally implemented is very benign. Informally, that

system consists of a set of sites that execute the set

P of processes. (Unless otherwise stated, throughout
this paper the term "process" refers to an application

process, and the term "site" refers to a workstation

running an operating system and, once added, Isis.)

Sites and processes may fail, but only by crashing.

and if a site fails then so do the processes residing

upon it. The sites communicate via an asynchronous

network: no bounds on message transmission delays

are assumed.

The system model considered in this paper is ob-

tained by weakening aspects of this model in various
ways, namely by allowing the network or sites to be

corrupted by an intruder. The intruder can engage in

any active network attack (including denial of message

service) and can view all network traffic. However, we

assume that the intruder is limited in these attacks by

the (conjectured) properties of the cryptosystems and

signatures schemes we employ. We also assume that
the intruder does not engage in traffic analysis attacks:

i.e., we do not consider such attacks here and assume

that encryption is sufficient to hide the contents of a

message from a network intruder. The reader should

see [30] for a survey of network attacks.
We also assume that sites may be corrupted by an

intruder during system execution. Once corrupted, a
site may exhibit arbitrarily malicious behaviors, again

limited by the cryptosystems and signature schemes

we employ. For simplicity, we assume in this paper

that once a site is corrupted, it remains so forever

Intuitively, a corrupt site is one on which the operating

system or Isis code or data has been maliciously or
accidentally altered or replaced.

We make two assumptions about the operating sys-

tem running at an uncorrupt site. First, we assume
that it authenticates in a secure fashion the user iden-

tifiers of local processes. _ Second, we assume that it

provides protected, private address spaces for, and pri-

vate, authentic message passing between, all local sys-

tem and user processes. This includes the protecri_,t_

2This is a rather strong requirement, but the mechanism-

described in this paper facilitate its implementation. For exam-

pie, if smart-card technology is available, then each user and _t ,"

can be treated as an Isis group and the delegation mecham,t,_-

of section 5 can be used to authenticate the user identifier_ .

processes executed from remote sites in a fashion similar to th.,t

of DSSA [11]. Even without such technology, the auther_t, ,-

tion mechanisms of section 4.1 provide a secure communi,'at _ _

channel between any two sites that facilitates the authent i,-._t, _

of user identifiers.

Go,.i_,x+i , ; -;:.drl ""

OF POOR QUhLITY

of virtual address spaces stored on external media.

In this paper we also assume that each uncorrupt

site maintains a local clock that is synchronized with

the clocks on all other uncorrupt sites. A clock syn-

chronization algorithm is currently being implemented

as part of a real-time extension of the Isis toolkit.

While a detailed discussion of this algorithm is out-
side the scope of this paper, we note that it is based

upon a time service which, with the authentication

mechanisms described in this paper and physical safe-

guards to ensure its integrity, can be adapted for use
in our system model.

Finally, we assume that the Isis failure detector and

name service behave according to specification (i.e.,

are not corrupt). These are services provided by Isis
and will be discussed briefly in sections 4.1 and 4.2,

respectively. The security of these services is a topic of
ongoing research; one possible approach is described

in [201.

4 Protecting the Isis abstractions

Informally, we would like to make the Isis abstrac-

tions described in section 2 robust in the system model
of section 3. In particular, we would like to ensure that

all processes in a group observe correct deliveries of

group views and messages. This is clearly impossible,
however, if a site hosting a group member is corrupt,

because that site could cause arbitrary events to be

observed in any order by any proce_ it hosts. We

are thus faced with two reasonable options: we can

either attempt to guarantee the Isis abstractions in all

groups, but to only those processes that reside on un-

corrupt sites, or we can attempt to guarantee the Isis

abstractions only in groups that have no members on

an uncorrupt site.

We have opted for the latter for several reasons.

First, the latter approach is more consistent with our

original motivation, namely to enable a programmer to

construct a fault tolerant application on trusted sites,

despite the fact that the network or other sites can-

not be trusted. Second, the former could be achieved

only through great cost to the performance of the sys-

tem; e.g., all correct sites would be required to reach

consensus on the contents of each group multicast be-

fore delivering it to the application. Such an overhead

would be unacceptable to the type of applications for

which Isis is intended. Third, very few of the Isis ap-

plications we have seen could tolerate the corruption
of some group members, even if the Isis abstractions

were provided to the correct members. And, we ex-

pect that very few developers would be willing to pay

the performance penalty of making their applications
tolerant of such corruptions.

A consequence of this design decision is that pro-

cesses residing on untrusted sites should not be al-

lowed to join a "trusted" group. In section 5. we

present a method by which access to groups can be
controlled. In those applications that require commu-

nication with processes on less trusted sites (e.g., the
trading service of section 1), we suggest that such com-

munication be performed in a point-to-point fashion

between the untrusted process and a single member of

the group. Then, for instance, the untrusted process

could multicast to the group by sending the message

to the member, which would multicast the message on

behalf of the process. This approach has the disadvan-
tage that a multicast from the untrusted site will be

somewhat slower. However, it is beneficial in that it

virtually eliminates any threat that the corrupt site

could pose to the consistency of the group members

(from the point of view of Isis); the one exception to
this is discussed in section 4.3.

Continuing, then, we restrict our efforts to process
groups that reside on uncorrupt sites. That is, let

sitesi(G) be the set of sites hosting the members of
viewi(G), and let an uncorrupt group G be one such

that at any time during execution, if site s is cor-

rupt and viewi(G) is the current group view, then

s _ sitesi(G). Then, in this work we enhance Isis

to ensure that if G is uncorrupt, then processes in

Ui viewi(G) observe correct sequences of events asso-

ciated with group G, and "external" operations that

involve G, such as group joins and communication
with sites outside of G, can be performed with cer-

tain security guarantees. Henceforth, when we speak

about a process group, we assume that it is uncorrupt,
unless otherwise stated.

As mentioned in section 1, in this paper we focus

on three issues that are fundamental to our goals. To

avoid an indepth discussion of how the Isis abstrac-

tions are presented to processes, we will not describe

how the mechanisms we present here are applied to

implement specific abstractions (e.g., the delivery of

group views). Instead, we concentrate on more basic

problems that could undermine these abstractions and

that must be addressed in any system offering similar
functionality.

First, a necessary step is to develop a subsystem

that provides efficient authentication of group muiIi-

casts. This subsystem should allow a site in a gro_J?
(i.e., a site hosting a member of a group) to detert r'tt-

tempts by an intruder to insert, alter or replay gr,-_,I,

messages or to impersonate another site in the gro_Jl,

ORIGINAL PAGE IS
OF PO_? C ' "'r,,

With such a subsystem, a site in the group could rely

upon the authenticity of messages apparently from

other sites in the group. In addition, since altered

messages would be detected (and ignored), attacks on

the integrity of messages would become indistinguish-

able from lengthy message delivery times, as are denial

of message service attacks already. And, since Isis is

constructed for an asynchronous network, Isis would

behave safely under such attacks. (Intuitively, here we

are reducing these active network attacks to commu-

nication failures.) In section 4.1 we propose such an

authentication subsystem.

Second, the protocol by which a process joins a

group is crucial to the process group abstraction, be-

cause the joining site's perception of the group mem-

bership is directly dependent upon the security of the

join protocol. In Isis, when a process requests to join

a group, it specifies the group address. This address

is used by the process' site to send the appropriate re-

quest to the group, and it is necessary that the process'
site be able to authenticate the apparent response of

the group. A related issue that must be addressed is
how a process can obtain an authentic group address

for a group it wishes to join. In section 4.2 we discuss
these issues and extend our architecture to address

them.

Third, in section 4.3 we discuss the task of pre-

serving causality among multicasts in a hostile envi-

ronment. We argue that simply preserving causality

among messages in one or several uncorrupt groups

may not suffice for groups that must communicate

with less trusted principals. We then formulate the

specific causal guarantees we provide, and describe

protocols to implement them.

4.1 Multicast authentication

We introduce authentication mechanisms at the

lowest layer of the Isis toolkit, namely the Multicast

Transport Service (MUTS) [29]. A copy of MUTS re-

sides on each site, logically at the transport layer of

the ISO OSI Reference Model, and provides to the lay-

ers above it at-most-once, sequenced multicast com-

munication to other sites. MUTS provides these ab-

stractions while insulating the higher layers from the

particular transport protocol used, which may exploit

hardware multicast capability.

For our purpomm, authentication must be intro-
duced at the MUTS layer. Since MUTS is the lowest

layer of the Isis toolkit, we cannot introduce authenti-
cation mechanisms closer to the network, and because

Isis is designed to run on many different platforms,
we cannot rely upon authentication mechanisms be-

ing available at lower layers. It would be fruitless to

authenticate messages only at higher layers of the Isis

system, as then they could not rely upon the abstrac-

tions provided by MUTS. For example, a network in-

truder could then undetectably tamper with the infor-

mation MUTS uses to sequence messages.

Before presenting our authentication mechanisms.
we briefly consider how MUTS works. Each MUTS

layer maintains a current member list of sites for each

group it (or rather, its site) is in. A copy of MUTS

learns about changes to the site membership of a group

from the layer above it, which communicates with

other sites in the group and with the Isis failure detec-

tor [2, 21] to make this determination. When MUTS

receives a message from a higher layer to be multi-

cast to a group, it opens a connection to the members

of its current member list for that group, if one does

not already exist. MUTS then breaks the message into

packets, and hands these packets to the transport pro-
tocol for transmission. A connection is associated with

exactly one group and is simply a logical end-to-end

data path from the originating site to the other sites in

the originator's member list. If a site is removed from

the originator's member list, it is also removed from

the connection, but if a site is added to the origina-
tor's member list, the old connection is disassembled

and a new connection is negotiated for the new mere+

ber list. Each packet carries with it the connection

number and a sequence number for the connection.
Connection numbers are unique system-wide, and the

sequence numbers for a connection form an increas-

ing sequence. When the sequence reaches its upper
bound, the connection is disassembled and a new oil,'

is negotiated.

Techniques for authenticating messages (or in this

case, packets) have existed in the literature for many
years. Traditionally, these methods have employed

encryption, but methods based upon pseudo.random

functions are also theoretically attractive. Inforrnattv

a pseudo-random function f has the property that t_

f is unknown, then it is computationally infeasible t_,

produce f(m) for any m with a probability of su,--

cess greater than random guessing, even after hav_u:

seen other {m', f(m')) pairs. Thus, given a famil_ ,,f
pseudo-random functions {fK}K_, indexed b.v k,.x-

from some key space IC, two parties that share _

cret key K can authenticate messages between ,+:t,h

other by appending fK(m) to each message -+ i'-'+-':

(In Isis, we will efficiently approximate this techu_,£,_,

e.g., with one-way hash functions [27].)

For MUTS we generalize these ideas to take a,t_ ,+

tage of hardware muiticast capabilities that z_:t_

+35 +'+(.::?::_ QUAt.t++'Y

exploitedbythetransportprotocol.Instead of estab-

lishing a shared key for every pair of MUTS layers, we

establish a shared key per connection, called a connec-

tion key. The connection key is a secret held by the

sites involved in the connection and is used to authen-

ticate packets sent on the connection. When a connec-
tion is created, the site initiating the connection gen-

erates a new connection key K and distributes it, in a

fashion to be discussed below, to the sites on its mem-

ber list. Then, the multicast "m, fK(rn)" of packet m

on the connection can be verified at all destinations.

In addition, an application can request that its mes-

sage be encrypted, in which case any fragment of that

message included in packet m will also be encrypted

under K (e.g., using DES [6]). Provided that the con-

nection is fresh (i.e., established with a non-replayed

message), each destination can verify that rn is not a
replay, because it contains the sequence number for
the connection. Here we do not detail the protocol

by which a connection is opened, although we remark
that the freshness of a connection is guaranteed by in-

corporating a timestamp into the connection initiation

message.
Because the establishment of a connection is a

somewhat frequent occurrence, it is important that a

connection key be distributed efficiently. The method

for distributing a connection key should, if possible,

require a single multicast and a single encryption (ver-

sus one encryption for each site on the originator's

member list). In Isis, we achieve this by employing

a group communication key (or just communication

key). A communication key is a shared key possessed

by all sites in the group. The communication key for

a group is created by the site hosting the first member

of the group, and as other processes join, it is given
to their sites as described below. The connection key

for a connection is thus communicated in a single mul-

ticast, encrypted with the communication key of the

group.
In an open network environment, key exchange

eventually requires the intervention of some a prior/

trusted authority, which often takes the form of an
authentication service. In Isis we employ such a ser-

vice to establish secure channels by which communica-

tion keys can be distributed. We choose a public key
authentication service due to the security advantages

that can be achieved [9]. Associated with the authen-

tication service is a private key (known only to the

service) and a corresponding public key. The public

key is given to each site, along with the site's own site

key (a private key/public key pair), when it is booted. 3

3The boot procedure appropriate for each site in a paxticu-

Once booted, the site obtains from the authentication

service its certificate, which contains the identifier and

public key of the site and the expiration time of the

certificate, all signed by the private key of the authen-
tication service. Each site's certificate is subsequently

disseminated from the site itself, with the site con-

tacting the authentication service for a new certificate

when its certificate expires. The exact implementa-

tion of the authentication service is a topic of ongoing

research; one possible approach is described in [20].

A communication key is sent to a site after obtain-

ing the site's certificate and encrypting the communi-

cation key under the site's public key. This exchange

takes place as part of the group join protocol, which
will be described in the next section. We emphasize
that no interaction with the authentication service is

required when a communication key is distributed.

To summarize, we propose to protect group com-
munication via a hierarchical key distribution scheme.

The initial keys in the system are the site keys. A

group communication key is created when the group
is created and distributed using site keys when group

joins take place. This communication key, in turn, is
used to establish connection keys within the group.

The benefits of this scheme are many. First, the use

of shared keys and efficient algorithms at the level of

connections should result in minimal performance cost

for group multicasts, which are by far the most com-

mon operations in most Isis applications today. Sec-
ond, since a different key is used per connection, the

lifetime of a connection key is limited, and a different

key is used for each muiticasting source. This should
limit an intruder's ability to cryptanalytically attack

connection keys. Third, the more costly public key

operations are performed less frequently, when groups

are joined.

Finally, we emphasize that sites hold connection

keys, communication keys, and private keys of sites:

user processes do not. This prevents a malicious user

process on an uncorrupt site from improperly dis-

tributing or using these keys. Moreover, when a pro-

cess is removed from a group, the site on which it re-

sides can destroy the communication and connection

keys that it held on behalf of the process. By doing so.

if the site is subsequently corrupted, then the intruder

will not be able to masquerade as a group member. If

lax setting is dependent on many factors, such as the physical

security of the site, whether the site is disldess, and the role of

the site in the system. Thus, a complete discussion of this issue

is outside the scope of this paper. However, the boot proce-

dure used st each site should prevent an intruder from booting

the site with false operating system or Isis code or with a false

authentication service public key.

C_tGhN_L PAGE IS

OF POOR QUALITY

the entire site crashes, we rely upon the loss of volatile

storage to eliminate all keys from memory.

4.2 Joining groups

The protocol by which a process joins a group is

crucial to the process group abstraction, because if
this is not secure, an intruder may cause the process

to observe fallacious group views and thus to act in-

correctly. In Isis, the protocol for a process to join a

group is as follows. First, the requesting process spec-
ifies the group address of the group it wishes to join.
This address contains the address of a group contact,

which is a distinguished site in the group. The pro-
cess' site sends the join request to the group contact

and, once admitted, is sent a list of group members

by some site in the group. Note that if the requesting
site includes its certificate in the request, then the site

that returns the member list can also return the group

communication key encrypted under the site's public

key.
In order for the join protocol to be secure, the pro-

cess' site must be able to authenticate the response as

being from a site in the group. And, since the pro-
cess' site does not know what sites are in the group,

the site keys of section 4.1 do not suffice for this. To

facilitate the required authentication, we introduce a

new type of key. When a group is first created, the ini-

tial site in the group creates a public key/private key

pair, the private key of which is called the group key

(or just the private key of the group). The group key
is then communicated to group members' sites just as

the communication key is, as part of the join protocol.

While these operations will reduce the performance of

group creates and joins, they have no effect on the

performance of group communication. Like communi-

cation keys, the group key is destroyed by a site when

all group members it hosts are removed from the group

(or when the site itself fails). We utilize this new type
of key by including the public key of the group in the

group address. This enables a joining process' site to
verify a site's membership in the group by challenging

it to prove posse_ion of the group key.

Of course, the succe_ of this scheme hinges on the

ability of a process to obtain the authentic address of

a group it wishes to join; for the remainder of this sec-

tion we address this issue. Other than by creating the

group, in Isis a process can obtain a group address in

either of two ways: it can simply receive it from an-

other application process, or if the group is registered

at the Isis name service, then the process can request

the group address from the name service by specifying

the group name. The name service is a fault tolerant

Isis service that implements a hierarchical name space,

like that of a file system except with group addresses
(or other information) at the leaves instead of files. A

group name is a path from the root to a leaf in that

hierarchical name space. A process can register the

group address under some name at the name service
anytime after the group is created. A group that has

not been registered with the name service is an anony-

mous group, and the address of an anonymous group

can be obtained only from another application process

(or by creating the group).

If a process receives an address from another appli-

cation process, it can trust that address only as much

as it trusts the other process. In particular, if it can

be verified that the sending process is a member of

either a "trustworthy" process group or a group that

was delegated by such a group (see section 5), then the

address may be perfectly acceptable. But, to verify

the claims of the sending process, the receiving pro-

cess must obtain the group addresses (i.e., the pub-

lic keys) of the delegating groups and the group of

which the sending process claims to be a member. So,

in many cases verification of group addresses received

from other processes requires that the verifying pro-

cess be able to obtain authentic group addresses from
the name service.

Thus, the ability to obtain authentic group ad-

dresses through the name service is fundamental to

the security of group joins. The authentication mech-

anisms of section 4.1 can easily be adapted to allow a

site to authenticate the name service, e.g., by having

the name service sign group addresses with its pri-

vate key and having the authentication servic_ prr-
duce a certificate for the name service. However, as

it stands there is still no reason for the process to be-
lieve an address obtained from the name service, be-

cause the name service cannot verify the integrity' of

the addresses itreceivesand stores.To compensate

forthisproblem, we allow processesto impose access

controlsupon the directoriesof the hierarchicalnam,"

space. That is,when a processcreatesa directoryof

the name space, itspecifiesaccesscontrolpolicy'5_r

the directorythat restrictswhich processescan r._-

istera group or createa directoryin that director_

in section5,we describe a method by which thisa,̀ -

cess controlpolicycan be representedand enforc,,i

The name servicewillallow only an authorized pr,_-

cess(residingon an authorizedsite,which can be ._,J-

thenticatedasinsection4.1)to registera group inlh,

directory.A processcan then obtain a group ad,Jr....

from a directoryit"trusts"based upon the direct,-,r_-

owner and accesscontrolpolicy.

4.3 Causal multicast

As previously described, the CBCAST protocol im-

plements Isis' causal delivery ordering property and is

central to the Isis system. For pedagogical reasons,

we begin this section with two illustrations of causal

multicast ordering.

Consider first an instance of single group causality,

illustrated in part (a) of figure 1. This shows a single

process group with four members pl, p2, pz and P4,

residing respectively on sites st, s2, s3 and s4. Time

increases down the vertical lines, and a group of arrows

emanating from a point on a vertical line represents

a CBCAST (i.e., causal multicast) to the group. An

arrow ending at the vertical line below a process indi-
cates the delivery of the multicast represented by the

arrow to the process. (We have omitted drawing the

delivery of the message to the sending process, which
can be done immediately.) In this example, Pl multi-

casts rut to the group, and after s_ delivers it to P2, P2

multicasts m2 to the group. Causality requires that

m_ be delivered to p4 after ml, as indicated in part (a)
of figure 1. The method by which s4 decides upon this
delivery ordering depends on the particular CBCAST

protocol used.

The more complex flavor of causality is called mul-

tiple group causality, illustrated in part (b) of figure 1.

In this example the four processes are organized into
three processgroups Gl, G2 and Ga, respectivelyin

views {pt,P2,p4}, {p2,Ps} and {P3,p4}. FirstPt mul-

ticasts message mt to group Gl. After ml is delivered
to P2, P_ multicasts m2 to G_, and upon delivery of

rn2 to Ps, Ps multicasts ms to Gs. Multiple group

causality requires that m3 be delivered to p4 after mr,

as indicated in the figure.

The CBCAST protocol is implemented above the

MUTS layer. Thus, given the authentication mecha-

nisms of section 4.1, the CBCAST protocol can rely

upon the MUTS abstractions (i.e., at-most-once, se-

quenced multicast) in an uncorrupt group. As we will
see in a moment, this enables us to use certain Isis

protocols originally designed for benign environments

to provide causal orderings among messages in a set

of uncorrupt groups.

However, we argue that for applications that must

interact with untrusted principals (e.g., the trading

service of section 1), this guarantee may not suffice.

To see why, suppose that s3 is corrupt in part (b)

of figure 1. Depending on the particular CBCAST
protocol used, it may be possible for s3, by not fol-

lowing the protocol, to trick s4 into delivering m3 to

P4 before mr, as in part (c) of figure 1. Intuitively,

s3 might do this by omitting to include information

on rn3 that conveys ms's causal relationship with rnt.

Such an attack is possible with several of the causal

multicast protocols described in [3]. The danger in this

is apparent in the OTC example of section 1: suppose

that Gt is the replicated trading service, rnl contains
a client's request to purchase stock, and rn2 reflects

that (intended) purchase. Then, after seeing m_., the

intruder at s3 could attempt to effect the delivery of a

request m3 for the same stock before mx at replica p4

of the service, in order to raise the apparent demand
for that stock and thus the price offered to the correct

client. Therefore, if a causal delivery ordering between

rnt and ms is not enforced, a type of "insider trading"

may occur.

This problem illustrates a form of attack that must

be considered in any system that attempts to detect

causal orderings among messages. We call this type of

attack a backdating attack. Informally, a message rn is

said to be backdated if there exists another message m'

such that m is causally after (i.e., could have been af-

fected by) m', but at some correct site, it appears that

m is not causally after m 1. So, in the example above,
the message ma is backdated, because the causality

detection mechanisms at s4 could not detect that rn3

should not be delivered until mt was. Naturally, there

is a complementary form of attack called postdating,

although in general it poses no threat to applications

concerned with potential causality only. A more for-

mal discussion of postdating and backdating attacks

with respect to various forms of causality is outside the

scope of this paper and will be presented elsewhere.

Message encryption is, in general, a prerequisite to

preventing backdating attacks, because the intruder

can eavesdrop on all messages and can initiate acti;-

ity from a corrupt site or malicious process based upon

the information so observed. To illustrate this. sup-

pose that in the previous trading service example, the
intruder observes mt on the network and sends m3

based only upon information obtained from rnt (i.e,

remove m2 from the figure). Now we have precisely
the same scenario as before, in the sense that rn3 must

be delivered to P4 after mt in order to prevent the "in-

sider trading" previously described. However, there is

no apparent way for s4 to detect this causal relatic, n-
ship. This problem can be prevented by encr)ptlt_g

mr, which prevents an intruder from viewing rnt '+ cc, t_-
tents. Whether encryption is justified in a specifi : c,x,,,

depends upon the particular application and me,sag,,

although for simplicity we assume in the rem+tit_,l, r

of this section that all communication is encrypt e,t _
described in section 4.1.

The set of causal guarantees we provide pr+ _,t_r-

ORIGINAL PAGE IS

OF POOR QUALITY

P2 P3 P4"_

lqr/.! \ _

m'2 \ ,_. ,

Figure 1: Causal Multicast

1711 \ _

(a) Single group causality (b) Multiple group causality (c) Causality violated

backdating attacks, in addition to providing the nor-

mal causal guarantees in uncorrupt groups. To specify

these guarantees, we first introduce some terminology.
We say that a message is recezved at a site when MUTS

at that site gives the message to the CBCAST layer,

and we further stipulate that a message is received at
the site from which it is multicast immediately after

it is multicast. It is also convenient to redefine

to avoid making any assumptions regarding events at

corrupt sites or the semantics of multicasts in corrupt

groups. Henceforth, -,-* is the smallest relation satis-
fying the following conditions.

• For any i and p, ife_ and e_+1 are executed on an
i

uncorrupt site, then ep -,-* e;+t.

• For any p, q, rn and G, if G is uncorrupt and

if meastp(m,G) and deliverq(rn, G) are exe-
cuted on uncorrupt sites, then meastp(rn, G) ",-*

deliverq (m, G).

As before, ---* is defined as the transitive closure of

-,,*. Suppo6e that meastp(rn, G) --* meastq(m',G'),
where G is uncorrupt. Note that by the definition

of --,, p and q reside on uncorrupt sites (when these

events are executed), although G' may be corrupt. Let

r be any process to which rn is delivered in G. Then,

we provide the following guarantee.

• If G' is uncorrupt and m' is delivered to r in G',
then m' is delivered to r after m.

• If G and G' are different groups and a message

rh is (i) received at r's site after the multicast of

m' from q's site but (ii) delivered to r before m,
then _ was multicast before m' was multicast.

The first guarantee is simply the usual causal

guarantee of section 2 applied to communica-

tion among uncorrupt groups: deliver,(m,G) --

deliverr(m',G'). The second guarantee is intended

to prevent baekdating attacks. To see this, suppose

that G _ is corrupt. Clearly any message rh seat on
the basis of information the intruder obtains from m'

can be received at r's site only after m _ is multicast.

And, if the attempt to backdate rh to before m were
successful, then _ would be delivered before m. How-

ever, this guarantee says that if both of these condi-
tions hold, then the intruder must have sent rh before

seeing m'. For instance, in the OTC example of figure
1, this prevents rn3 (= rh) from being delivered before

mt (= m) at s4 (= r's site), because m3 is received at

s4 after the multicast of rn2 (= rn').

We provide these guarantees through a combina-

tion of several protocols described in [3]. Here we de-

scribe protocols that suffice when group memberships

do not change; in the remainder of this section we trPat

each (uncorrupt) group as simply a static set of pro-

cesses. (Although we synchronize communication on

view changes precisely as in [3], this introduces com-

plexities that are best omitted for the sake of brevity)

The protocols described here also require that commu-
nication with corrupt sites be performed in a point-to-

point fashion, as suggested at the beginning of sect iota

4. We have extended these protocols to provide rh+.

above guarantees even without this requirement: ,:,m_

++3i"+ L'+''"":+-,+,u:,.',_!+:At._TY

such protocol is described in appendix A.

We begin with the vector timestamp protocol for

a single group, which provides single group causality

only. More precisely, suppose we define _"G for an un-

corrupt group G to be the smallest relation satisfying

the following conditions.

i

• For any p E G and any i, ep "-_u e_+t.

• For any m and any p,q E G,

mcastp(m, G) "-_G deliverq(m, G).

As usual, let --,_ denote the transitive closure of

"_G. The vector timestamp protocol guarantees

that if meastp(m,G) "*G mcastq(m',G), then
deliverr(m, G) ---*c deliverr(m', G) at any common
destination r.

In this protocol, a vector timestamp VTG(m) is ap-

pended to each multicast m in group G by the site

multicasting m. Vector timestamps are assigned to

messages in such a way that VTG(m) -K VTG(m') iff

mcastp(m, G) "--*a mcas%(m', G), where -_ is an ir-
reflexive partial order on the timestamps. When a

message is received in a group G at a site, it is placed
in the delivery sequence for a destination immediately

before the earliest message m' already in that de-

livery sequence such that m' was received in G and

VTa(m) ._ VTa(m'); if no such m' exists, then m is

placed at the end of the delivery sequence. So, mes-

sages are delivered in order of receipt, except when
that would result in a violation of single group causal-

ity. If G is a static group of size two created for point-

to-point communication, then messages in G can be
delivered in the order they are received, and vector

timestamps are not used in G; i.e., a message received
in G is simply placed at the end of the delivery se-

quence for the destination.

We extend this protocol to provide the above multi-

ple group guarantees by using the conservative proto-
col. In this protocol, a multica_t is defined to be stable
if it has been received at all of its destination sites. A

group G is active for a process p if p's site does not
know of the stability of a multicast to G either sent

by or delivered to p. The conservative muiticast rule
states that a proce_ p may multicast to group G if

and only if G is the only active group for p or p has

no active groups. If p attempts to multicast when this
condition is not satisfied, the multicast is delayed, and

during this delay no multicasts are delivered to p. So,

in part (b) of figure 1, s_ simply delays sending m2 un-
til it knows that ml has been received by s4, and then

s4 delivers rnl before ms, because they were received
in that order.

The proof that these protocols satisfy the first guar-

antee is given in [3]. We now argue that these proto-

cols provide the second guarantee. Suppose that G
and G' are different groups, and that _ is receive4 at

r's site s, after m' was multicast, but delivered to r

before m. By the conservative protocol, m was sta-
ble and thus received at s_ before m' was multicast.

Therefore, rh must have been received at s, after rn.

By the above protocol descriptions, rh could have been
delivered before m only if (i) rh were multicast in G

and VTa(rh) -< VTG(m), or (ii) rfi were mutticast in
another group G, and for some rn previously received

in G and placed before m in the delivery sequence,

VT¢(_) -K VT¢(rh). Now, suppose for a contradic-
tion that rh was actually sent after (or at the same

time that) m' was multicast. Possibility (i) could not

happen due to the correctness of the vector timestamp

protocol for group G, and similarly (ii) could not hap-

pen if G were uncorrupt. So, G must be corrupt. But,

assuming that (_ is really a point-to-point connection,
vector timestamps in (_ are not used, and (ii) could

not happen. Thus, r_ must have been sent before m'.

5 Delegation and access control

As stated before, the work of section 4 presupposes

uncorrupt groups (except where otherwise stated). In

light of this, it is obvious that in real systems, access

to groups must be restricted. In the "secure island
of sites" model discussed in section 1, access control is

obviously needed to prevent a process on an untrusted

site from joining a group. Access control is also needed
within the secured island, because while the sites in

that island are assumed to be secure, the processes

they execute should not necessarily be trusted to join

any group whatsoever.
In this section we propose an access control scheme

based upon access control lists (ACLs) that we plan
to employ in our system. We have chosen ACLs over

classic capabilities to avoid several well-known short-

comings of capabilities, such as difficulties involved in

revoking access rights, the inability to specify denial of

access rights, and the need to confine capability prop-

agation. And, while in some settings these problems
are offset by the relative efficiency of capabilities, w,.

have found that in majority of Isis applications, grout,

joins are infrequent in comparison to other group ,q)-

erations (e.g., multicasts). Thus, we expect tha_ _h,"
economy of capabilities would impact overall s3_t,._

performance only minimally. The scheme we pr, I;....

here is sufficiently powerful to be used as th, .,,1,

means to control access to groups, although it , ,,_1_t

10

ORiGiNAL PAGE IS

OF POOR QUALITY

also easily be adapted for use in a hybrid scheme (e.g.,

[121).

The straightforwardcriteriaon which torestrictac-

cess to groups are the owner and siteof the process

requestingaccess.That is,when a group iscreated,

the creatingprocess would specifya set (i.e.,ACL)

of (owner,site}pairsthat indicatesthe processesthat

would be allowed tojoin the group. While thismay

sufficefor many applications,there may be some for

which thisisinsufficient.Consider an extensionofthe

OTC example ofsection1 inwhich a clientgroup au-

thorizesthe tradingserviceto purchase certainstocks

with funds inthe client'sbank account. Suppose that

the servicemust then send a representativeprocessto

a group establishedby the client'sbank toarrange the

fund transferfor the stock purchase.4 But, the bank

willadmit thisprocessto the group only ifthe process

has been duly authorizedby one of the bank's clients.

In this case,determining whether to admit the pro-

cess based upon its owner (e.g., an individual broker)

and hosting site is insufficient for two reasons: this in-

formation neither convinces the bank group that the

process represents the trading service nor conveys the
authorization to access the client's account.

This flavor of authorization is related to many con-

cepts that have appeared in the literature in recent
years, including aathentication forwarding [26], cas-

caded authentication [25], and delegation [11]. Infor-

mally, each of these terms connotes the means by

which one party confers access rights to another, as

exemplified by the client delegating authority to the

trading service in the previous example. Delegation

in a group oriented system is different from that in

other systems only in that groups are delegating and

being delegated. In practical terms, this means that

groups need to be authenticated. Fortunately, we al-
ready have the mechanisms to do this, namely group

keys and the name service introduced in section 4.2.

The approach we take to delegation is best illus-

trated by an example. Suppose that group G1 wishes

to delegate some authority to group G2. To do so,
some member of G1 causes the credential

a,,T_,G2,S,(GI,7"1,G2) (I)

to be produced, where "Tl" isthe time at which this

credentialexpires,"$I" denotesthe signaturefunction

of GI (i.e.,signaturewith the privatekey ofGl), and

4In practice, the representative would probably request to
become an his clien_ of the bank group. Isis would then invis-
ibly create another group containing the client and the group
members. The access control scheme presented in this section
is particularly weLl-suited to restricting client access, although
for simplicity we will explain it in terms of member access only.

"GI" and "G2" identify groups G1 and G:, respec-

tively, either by address or name. Intuitively, a mem-

ber of G2 can present (1) to another party to prove

that G1 has delegated some access rights to G_ until

time T1; in general, the access granted to members of

G2 based on (1) is left to the discretion of individ-

ual object monitors. Any party can verify (1) with

the address of G1, which contains Gl's public key (see

section 4.2). A process in G2 can delegate further to

group G3 by forming

G1, T1, G2, T2, G3, &(SdG_, T_, GD, T_,G3). (2)

(In the notation of (2),we are assuming that the sig-

nature scheme allows any party possessingthe pub-

lickey of G_ to invertS2(SI(GI,TI,G2),T2, G3) to

obtain ,91(GI,Tl,G_),T_,G3.) This credentialshould

be consideredvaliduntiltime rain{T1,T2}. Of course,

G3 could delegateyet furtherina similarfashion,and

in general,credentialscould become arbitrarilylong.

This delegationscheme issimilarto that in [25],and

the reader isreferredtherefor a generaldiscussionof
itsfeatures.

The choiceof whether to delegateto a group name

or a group addresshas subtleimplications.Ifa delega-

tionismade toa group address(e.g.,if"G_" isa group

addressin(I)),then only the group thatpossessesthe

privatekey corresponding to the public key in that

group addresscan utilizethat delegation.However, if

a delegationismade to a group name, then any group

that isregisteredunder that name beforethe delega-

tion expirescan possiblyexploitit. We expect that

both types ofdelegationwillbe usefultoapplications.

For instance,inthe previousOTC example, the client

might delegatetothe name ofthe tradingservice,ifit

wants the "current"trading service,whatever group

that may be, to perform the transactionfor it. The

tradingservice,however, may delegateto the address

of a satellitegroup that will handle the transaction

with the bank. By delegatingto a group name, the

delegatorimplicitlytruststhe directoriesthat are pre-

fixesofthe name to allowonly "trusted"groups to be

registeredunder the name to which itdelegated au-

thority.Below we willdescribea scheme that can be
used to controlaccessto directories.

The method by which a delegatinggroup identi-

tiesitself is also important. This is true because the

delegating group can restrict what access rights are
transferred to the delegated group by identifying it-

self appropriately. This is known as delegating by"

roles and has been used in other delegation schemes

(e.g., [11, 17]). Intuitively, associated with each role

ll

ofagroupissomesubsetoftheaccessrightsthat the
groupisallowedto delegatetoothers.Whenagroup
delegatestheauthorityof a role,theauthoritytrans-
ferredto thedelegatedgroupis at mostthat of the
role,andnotofthedelegatinggroup.So,in theOTC
example,theclientgroupcoulddelegate authority to

the trading service under a role that was used to estab-

lish the bank account and that would be useless, e.g.,

for reading the client's mail. As another example, cre-

dential (1) could represent a referral made by a bank

group G1 for a client G2, which is required before the
bank's loan service will negotiate with the client. In

this case, G1 would probably delegate by a role with

which no access rights of G_, per se, are associated,
but that nevertheless indicates the needed referral. In

our setting, a role corresponds to just another group

name or group address. That is, a group can create

roles for itself by registering other names for the group

with the name service or by "duplicating" the group

to obtain several group addresses (i.e., public keys).

This delegation scheme extends easily to an ac-

cess control scheme for group membership as follows.
Replicated at each site in a group is a set of delegation

templates in addition to the set of (owner, site) pairs

previously described. Each delegation template is a

list {_1,..-,{_, where each _i is either a group name

or address. (This does not imply that a group must
know in advance the addres_s or names of all groups

that should appear in its delegation templates. The

method of specifying these templates could employ,

e.g., wild cards.) A credential

G1,TI,...,G,,_-I,T,n-I,G,n,$,,,-I(...) (3)

is said to match the delegation template {_1,...,_,_

if m >_ n and for all j satisfying 1 < j <_ n,

Grn-,_+j = _j. (Here, two addresse_ are equal if they

contain the same public key.) That is, the credential

in (3) matches the template _1,..., _,_ if the creden-

tial ends with a sequence of delegations beginning with

_1, followed by {_2, and so on, and ending with _,_. In-

tuitively, the credentials that match some delegation

template of a group are those that the group accepts

as legitimate patterns of delegation.

Given sets of delegation templates and (owner, site}
pairs, access to a group is controlled as follows. If the

group contact receives credential (3) embedded in a
request from some process p to join the group, p is

allowed to join if and only if all of the following hold.

The authenticity of credential (3) can be verified

with the appropriate group addresses (i.e., public

keys).

• p's site can vouch that p is in Gm (by illustrating
knowledge of the private key for Gin).

• Message (3) matches a delegation template for the

group.

* None of the delegations in message (3) have ex-

pired.

. The (owner, site) pair of p is listed in the set of

(owner, site) pairs for the group.

The group contact obtains any group addresses it
needs to check these conditions from the name service

(or from the credential itself).

We are currently considering extensions to this

scheme to enable the group being joined to automat-

ically limit the duration for which an admitted pro-
cess is allowed to remain a member. These limitations

could be based upon the credential used by the process

to gain admittance and could vary depending on the
meaning assigned to the credential by the application.

For instance, depending on the meaning of (3), in the
above scenario p could be allowed to remain a member

(i) indefinitely, (ii) until time min{Tt,...,Tm_t} is

reached, (iii) until p is removed from G,n, or (iv) until

either (ii) or (iii) occurs. In cases (ii), (iii), or (iv), p's
site could remove p from the group when the appropri-

ate condition occurs. Which of (i)-(iv) is chosen for a
particular joining process could be determined on tile

basis of which delegation template and (owner, site)
pair were matched to be admitted. Other extensions

to this access control scheme are being considered but
will not be discussed here.

This access control mechanism can be extended to

objects other than groups. We have already seen one

need for this, namely the directories of the hierarchi-
cal name space implemented by the name service de-

scribed in section 4.2. As in many file systems, a nam_ _

service directory has three natural types of access to

it, namely search, read and write. So, as when cre-

ating a group, a process can specify when creating a

directory in the name service a set of delegation tem-

plates and a set of (owner, site} pairs for each of th,_, •

types of access. A request to perform an operat_,_t_

on a directory would then be allowed subject to th, _

above five conditions on the requesting process a_,l
the credential it supplies.

6 Conclusion and future work

In this paper we have described a security arc!_il,
ture for use in the Isis toolkit, but structured ir_ ._: _

12

ORIGINAL PAGE IS

OF POOR QUALITY

a way that moet mechanisms should also be useful

in other group orientedsettings.The major features

of the securityarchitectureincludea group oriented

authenticationsubsystem, securemethods forjoining

groups, and protocolsthat provide certaincausalde-

liveryordering guarantees. In addition,we have pro-

posed an accesscontrolscheme based upon delegation

foruse ingroup orientedsettings.

Implementation ofthe basicmechanisms has begun

at CornellUniversity,inconjunctionwith the reimple-

mentation ofIsis.This implementation should provide

valuableinsightinto the efficiencyof our architecture

and mechanisms, and itisalsoforcingus to consider

user interfaceissues.In addition,we are in the pro-

cessofdevelopingthe necessaryinformationexchange

protocols.

Future work on this system isheading in several

directions.We axe consideringseveraldifferentexten-

sionsto the design of the system. In particular,we

arecurrentlyconsideringways to employ the basicar-

chitecturedescribedhere atmultiplesecuritylevels,as

would be appropriateifislandsofsiteswere securedat

differentlevels.However, we arestillunclearas tothe

consequencesofsuch a design.We are alsoconsidering

techniquesto recover,e.g.,afteran intruderhas infil-

trateda group. Finally,we are exploringtechniques

for building secure,faulttolerantapplications,given

the secured abstractionsprovided by thisarchitecture.

Acknowledgements

We are deeply appreciative of the distributed

systems group at Cornell University for contribut-

ing many interesting discumions regarding this re-

search. In particular, we thank Navin Budhiraja,

Tushar Chandra, Robert Cooper, Brad Glade, Cliff

Krumvieda, Keith Marzullo, Aleta Ricciardi, Patrick

Stephenson, Sam Toueg, and Robbert van Renesse.
Richard Platek and Raphael Yahalom also provided

helpful discussions. Mark Steiglitz developed a mecha-

nism for authenticating user identifiers under Isis; this

work did not become s permanent part of the system

but was a useful source of insight. Finally, we thank

the anonymous referees for many useful comments.

References

[I] BIRMAN, K. P., COOPER, R., AND GLEESON,

B. Design alternativesfor processgroup mem-

bership and multicast.Tech. Rep. 91-1257, De-

[2]

[3]

[4]

[5]

[6]

IT]

[sl

[9]

[10]

[11]

[12]

partment of Computer Science,Cornell Univer-

sity,Dec. 1991.

BIRMAN, K. P., AND JOSEPH, T. A. Reliable

communication in the presenceof failures.ACM

Transactions on Computing Systems 5, 1 (Feb.

1987), 47-76.

BIRMAN, K. P., SCHIPER, A., AND STEPHEN-

SON, P. Lightweight causal and atomic group
multicast. ACM Transactions on Computing Sys-

terns 9, 3 (Aug. 1991), 272-314.

BIRRELL, A. D. Secure communication using

remote procedure calls. ACM Transactions on

Computing Systems 3, 1 (Feb. 1985), 1-14.

CHERITON, D. R., AND ZWAENEPOEL, W. Dis-

tributed processgroups in the V kernel. ACM

Transactions on Computing Systems 3, 2 (May

1985), 77-107.

Data encryption standard. National Bureau of
Standards, Federal Information Processing Stan-

dards Publication 46, Government Printing Of_

rice, Washington, D. C., 1977.

DESMEDT, Y. Society and group oriented cryp-

tography: A new concept. In Proceedings of

CRYPTO '87 (Aug. 1987), pp. 120-127. Pub-

lished as Lecture Notes in Computer Science 293.

DESMEDT, Y., FRANKEL, Y., AND YUNG,

M. Multi-receiver/multi-sender network security:

Efficient authenticated multicast/feedback. In

Proceedings of IEEE INFOCOM (May 1992).

DIFFIE, W. The first ten years of public-key cryp-

tography. Proceedings of the IEEE 76, 5 (May

1988), 560-577.

FRANKEL, Y. A practical protocol for large

group oriented networks. In Proceedings of EU-

ROCRYPT '89 (Apr. 1989), pp. 56-61. Pub-

lished as Lecture Notes in Computer Science 434.

GASSER, M., AND MCDERMOTT, E. An archi-

tecturefor practicaldelegationin a distributed

system. In Proceedings of the IEEE Symposzum

on Research in Security and Privacy (May 1990).

pp. 20-30.

GONG, L. A secure identity-based capability sys-

tem. In Proceedings of the IEEE Symposium on

Research in Security and Privacy (May 1989).

pp. 56-63.

13

4; 'it' ' ";"¢

[13] KAAS,OEK, F. M., AND TANENBAUM, A. S.

Group communication in the Amoeba distributed

operating system. In Proceedings of the [EEE In-

ternational Conference on Distributed Computing

Systems (May 1991), pp. 222-230.

[14] LADIN, R., LISKOV, B., AND SHRtRA, L. Lazy

replication: Exploiting the semantics of dis-
tributed services. In Proceedings of the ACM

Symposium on Principles of Distributed Comput-

ing (Aug. 1990), pp. 43-57.

[15] LATH, C. S., AND HARN, L. Generalized
threshold cryptosystems. In Proceedings of ASI-

ACRYPT '91 (Nov. 1991).

[16] LAMPORT, L. Time, clocks, and the ordering of
events in a distributed system. Communications

of the ACM el, 7 (July 1978), 558-565.

[17] LAMPSON, B., ABADI, M., BuRRows, M., AND

WOBBER, E. Authentication in distributed sys-

tems: Theory and practice, In Proceedings of the

ACM Symposium on Operating Systems Princi-

ples (Oct. 1991), pp. 165-182. Published as ACM
Operating Systems Review 25, 5.

[18] OUSTERHOUT, J. K., SCELZA, D. A., AND

S[NDHU, P. S. Medusa: An experiment in dis-

tributed operating system structure. Communi-

cations of the ACM 23, 2 (Feb. 1980), 92-105.

[19] PETERSON, L. L., BUC_tHOLZ, N. C., AND

SCHLICHTXNG, R. D. Preserving and using con-

text information in interprocess communication.

A CM Transactions on Computing Systems 7, 3

(Aug. 1989), 217-246.

[20] REITER, M. K., AND BIRMAN, K. P. How to

securelyreplicateservices.Submitted for publi-

cation,Jan. 1991.

[21] RICCIARDI, A. M., AND BIRMAN, K. P. Us-

ing process groups to implement failure detection
in asynchronous environments. In Proceedings of

the A CM Symposium on Principles o/Distributed

Computing (Aug. 1991), pp. 341-351.

[22] RIVEST, R. L. Cryptography. In Handbook of
Theoretical Computer Science, Volume A, Algo-

rithms and Complexity, J. van Leeuwen, Ed. El-

sevier Science Publishers B. V., 1990, ch. 13,

pp. 717-755.

[23] ROZmR, M., ET AL. Overview of the Chorus dis-
tributed operating systems. Tech. Rep. CS/TR-

90-25, Chorus Syst_mes, Apr. 1990.

[24] SATYANARAYANAN, M. Integrating security in a

large distributed system. ACM Transactwns on

Computing Systems 7, 3 (Aug. i989), 247-280

[25] SOLLINS, K. R. Cascaded authentication. In

Proceedings of the IEEE Symposium on Research

in Security and Privacy (Apr. 1988), pp. 156-163

[26]STEINER, J. G., NEUMAN, C., AND SCHILLER,

J. I. Kerberos: An authentication service

for open network systems. In Proceedings of

the USENIX Winter Conference (Feb. 1988),
pp. 191-202.

[27] TSUDIK, G. Message authentication with one-
way hash functions. In Proceedings of IEEE IN-

FOCOM (May 1992).

[28] TYGAR, J. D., AND YEE, B. S. Strongbox. In

Camelot and Avalon, A Distributed Transaction

Facility, J. L. Eppinger, L. B. Mummert, and

A. Z. Spector, Eds. Morgan Kaufmann, San Ma-

teD, California, 1991, ch. 24, pp. 381-400.

[29]VAN RENESSE, R., BIRMAN, K., GLADE, B..

AND STEPHENSON, P. Reliable multicast be-

tween micro-kernels. In Proceedings of the

USENIX Microkerneis and Other Kernel Archi-

tectures Workshop (Apr. 1992).

[30] VOYDOCK, V. L., AND KENT, S. T. Secu-

rity mechanisms in high-level network protocols

ACM Computing Surveys 15, 2 (June 1983), 135-
171.

A Causal multicast, continued

In this appendix, we describe a modification to the

CBCAST protocol described in section 4.3 that pro-
vides the causal guarantees described there without

requiring that communication with corrupt sites b,
only point-to-point. By removing this requirement, w_,

provide somewhat stronger causal guarantees to. e.g.
a process that finds itself in the intersection of ur_cor-

rupt and corrupt (non-point-to-point) groups, ttow-

ever, this protocol does not directly provide any ¢,th,_r

guarantees in a corrupt group, and so processes that

require other guarantees should continue to com1_mn_-

cate with potentially corrupt sites in a point-to-i)o_t

fashion only. We assume that group membershq, s (,_f

uncorrupt groups) are static, as before, and we tr.)at .t

group as simply a set of processes. Again, the exl,_

sions to handle group view changes are precisely r h

14

ORIGINAL PA_E [S

OF POOR QUALITY

in [3], although we omit them for the sake of brevity.
The relations ---* and ---*G are defined as in section 4.3.

The essential modification to the protocol of section

4.3 occurs in the placement of received messages in a

destination's delivery sequence. When a message m is

received at a site, it is simply placed at the end of the

delivery sequence. Then, beginning with the earliest

undelivered message in the sequence, the sequence is

stepped through, and the following rule is applied in

turn to each message m' (until m is reached): if m _
was received in the same group G as m and VTG(m) -..(

VTc(m_), then m _ is moved to the back of the delivery

sequence. The placement of m and this processing of

the sequence are done atomically, in the sense that no

new messages are delivered or added to the delivery

sequence until both are complete. We claim that with
no further modifications, this new protocol provides

the two guarantees of section 4.3.

We begin by sketching the proof of the second guar-
antee. Suppose that G and G _ are different groups,
and that rh is received at r's site s, after m J was mul-

ticast. By the conservative protocol of [3], m was sta-
ble before m' was multicast, as was any rh such that

mcast_(rh, G) --'*G mcastp(m,G). Therefore, once
m _ was multicast, m was already received at s, and

could never again be moved back in the delivery se-

quence for r. Since fn is received after m _ is multicast,
it follows that rh must be delivered to r after m. So,

the antecedent of the second guarantee cannot hap-

pen, and the condition is satisfied trivially.
We now sketch the proof for the first guarantee. If

G and G _are different groups, then the second guaran-

tee with rh -- m _ implies the first. If G and G _ are the

same group and mcast_(m,G) ""G mcastq(m _, G),

then the first guarantee holds by the normal vector

timestamp protocol and the new placement rule, be-

cause once m' is placed behind m in the delivery se-

quence for r, it will again be moved behind m each
time m is moved to the end of the sequence. The

last case is if G and G _ are the same group and

mcastp(m, G) "_G mcastq(m_, G). In this case, there

must be some _, fn and G different from G such that

mcastp(m, G) --* mcast_(rh, (_) --* mcastq(m', G).

As in the argument above for the second guarantee.

once rh is multicast, m is received at s, and can never

again be moved back in the delivery sequence for r.

And, since m _ can be received at s, only after rh is
multicast, m is delivered to r before ra_.

15

